BitFlow Frame Grabber Helps Researchers Generate 3D Structural Images of Biological Tissues

WOBURN, MA, JANUARY 24, 2022 — Biology researchers at Indiana University1 have developed an integrated system combining high-resolution optical coherence microscopy (HR-OCM) with dual-channel scanning confocal fluorescence microscopy (DC-SCFM) to enable 3D visual evaluation of cell activities involved in pupil developmental and disease conditions. Still in its experimental stages, this dual-modality 3D system simultaneously co-registers reflectance and fluorescence signals, giving it the ability to accurately track structural and functional changes in live specimens over time. Indiana University researchers hope to use their system to enable new investigations of biological processes in small animal models.
BitFlow Axion Camera Link frame grabber is a critical component of the hybrid system. It acquires the output signal from a spectrometer equipped with a Teledyne e2v high-speed line-scan camera operating at the rate of 250 kHz. A lateral resolution of 2-μm and axial resolution of 2.4-μm is captured in tissue over a field-of-view of 1.1 mm ×1.1 mm. The analog scanning signals, as well as the trigger signals for the BitFlow frame grabber, are generated synchronously through a four-channel analog output data acquisition card. Simultaneous recording of HR-OCM and DC-SCFM data was performed using custom software developed in LabVIEW 2017.
As data generated by faster, higher-resolution Camera Link cameras continues to grow exponentially, the Axion’s PCIe Gen 2 interface, with its StreamSync™ DMA optimized for modern computers, is needed to optimize their full performance. Features such as easier switching between different tap formats, a powerful acquisition engine, and a more flexible I/O and timing generator are all readily available in a dedicated low cost CL Base orientated frame grabber.
During development, researchers applied different strategies to enable the simultaneous recording of information, as well as to overcome the focal plane mismatch between both imaging modalities. The system’s performances were evaluated in imaging fluorescence microspheres embedded in multi-layer tape and silicone phantom. 
The combined system is synergistic in generating structural and functional information of samples; the DC-SCFM allows for the discrimination between different fluorophores, while the HR-OCM enables the 3D localization of the features inside tissue samples and enabled the depth localization.

1 “Development of high-speed, integrated high-resolution optical coherence microscopy and dual-channel fluorescence microscopy for the simultaneous co-registration of reflectance and fluorescence signals” Reddikumar Maddipatla, PatriceTankam School of Optometry, Indiana University, Bloomington, IN 47405, USA

System diagram

Neon-DIF Frame Grabber is BitFlow’s Upgrade Solution to Older Machine Vision Systems Running Differential Cameras

Neon DIF

Older machine vision systems are difficult and costly to upgrade, especially those based on RS422 and low-voltage differential signaling (LVDS) type interfaces. Incompatible with most modern frame grabbers, these legacy differential systems can now be brought up to speed using the BitFlow Neon-DIF differential frame grabber. Designed on the latest PCI Express (PCIe) platform, the Neon-DIF will upgrade an older differential system to acquire images up to 32 bits at 85 MHz from an existing LVDS camera, providing greater control, plus the convenience of running on Windows 10 or Linux OS.

“There are thousands of older differential systems today that handle basic processes at minimal cost, such as mail sorting, package handling, X-ray imaging, Focused Ion Beam, and Scanning Electron Microscopes. Unfortunately, users can’t upgrade the system’s PC to one featuring more powerful processing and a newer OS because the original PCI frame grabber is no longer available or isn’t compatible with a new PC,” explained Donal Waide, Director of Sales for BitFlow, Inc. “Our Neon-DIF frame grabber enables the user to save money by keeping the same LVDS line or area scan cameras, devices and application, yet upgrade their PC to use faster, more accurate image processing algorithms.”

Rather than PCI, the Neon-DIF is built on a half-size x4 PCIe bus interface that fits into the x16, x8, x4 and x1 slots found in today’s PCs. It installs fast and simple, bringing to an existing system a full set of new control signals and sync inputs for total camera and acquisition control.

Upgrades BitFlow Road Runner and R3-DIF
Along with older PCI frame grabbers from other manufacturers, the Neon-DIF provides an upgrade path for users of BitFlow Road Runner and R3-DIF PCI frame grabbers. It has the same connector pin-out and is compatible with their cables.

Ideal for Differential System OEMs
Besides legacy situations, the NEON-DIF is a cost-effective PCIe choice for OEMs developing new systems featuring cameras or other devices that output differential data. The Neon-DIF can acquire from just about any device and efficiently DMA its data into host memory at rates of 528 MB/S.

BitFlow SDK Support
The Neon-DIF is supported by the BitFlow SDK for both 32-bit and 64-bit Windows platforms. The SDK offers drivers, DLLs, and configuration utilities for people interested in using third party software. For those customers interested in developing their own applications, the SDK has header files, libraries, and example code for Windows XP/2003/Vista/Windows 7/10.