BitFlow Enters into Definitive Agreement to be acquired by Advantech

WOBURN, MA, OCTOBER 2, 2023 — BitFlow, Inc., an innovator in frame grabber technology for the machine vision industry, today announced that it has entered into a definitive agreement to be acquired by Advantech in an all-cash transaction representing a 100% equity stake in the company. The transaction was unanimously approved by BitFlow’s Board of Directors and is expected to close during the fourth quarter of 2023.

Advantech is a global leader in embedded, industrial, Internet of Things (IoT), and automation solution platforms headquartered in Taipei City, Taipei, Taiwan, with more than 80 office locations worldwide. Advantech has been a pioneer in integrating Artificial Intelligence (AI) into machine vision systems that transform traditional inspection processes into self-learning Smart Factory applications to improve profitability, drive innovation, and optimize operational efficiency. AI-powered imaging systems go beyond high-quality automated inspection to opportunities for generating information to determine root cause failures, independently measure key performance measures, predict maintenance requirements that reduce costly downtime, and increase the visibility of supply chains, among numerous other value-adding services.

Avner Butnaru, CEO of BitFlow, commented on the acquisition. “The choice to cooperate with Advantech was based on several key factors, including Advantech’s well-known global brand presence in machine vision applications in North America, as well as its global industrial hardware supply capabilities and complete after-sale support and services. Advantech’s manufacturing capability is also crucial to BitFlow. In addition, because of similar corporate cultures, the impact on customers brought about by the integration of Advantech and BitFlow will be greatly reduced. BitFlow believes that by combining its advanced imaging technology and Advantech’s R&D, sales and manufacturing capabilities, BitFlow products will play a much greater role in the AI vision market.”

Upon completion of the transaction, research and development teams for BitFlow and Advantech’s North American business development team will work together to launch innovative new 2D and 3D network devices for the industrial imaging market and fast-emerging AI vision sectors. For instance, BitFlow CoaXPress over Fiber (CoF) frame grabbers will make it possible to link Advantech AI cameras and compute devices using low-cost Fiber cables and connectors for transmission speeds that may soon approach 100 Gbps — two times the current CXP standard — to meet the high bandwidth requirements for AI processing.

As one of the founding technologies in factory automation dating back to the 1970s, machine vision is today at the forefront of the Industrial Internet of Things (IIoT) and AI. Machine vision’s capabilities are being drastically expanded by increasingly powerful computing, embedded and IIoT devices at the network edge, and a growing universe of deep learning AI models. This can permit an imaging system to detect incredibly minute defects, such as microscopic anomalies in the bond wires on a circuit board, resulting in enhanced product quality, a significant reduction in waste, and increased production throughput for companies both large and small.

Magic Pao, Associate Vice President of Industrial Cloud & Video Group said, “The application of advanced computer vision has been highly integrated with AI solutions. Over the last three years, in particular, strong growth in industrial AI has become much more evident. However, in the past, Advantech mainly focused on applications for traditional machine vision equipment, providing industrial-grade cameras and frame grabber cards to meet the basic needs of production inspection. But, as the industry moves towards high-end machine vision applications, such as for advanced semiconductor manufacturing and medical imaging, Advantech will need to supplement high-end image acquisition products to fulfill the demands for high-precision advanced vision inspection.”

BitFlow Inks New European Distribution Deal 

WOBURN, MA, AUGUST 25, 2022 — BitFlow, Inc. today announced expansion in its international distributor network by signing MaVis Imaging GmbH to represent its portfolio of frame grabbers in Germany, France, Italy, Spain and Portugal through MaVis’ integrated supply chain and customer-centric sales force. 

Headquartered in Taufkirchen, Germany, MaVis Imaging is staffed by a highly regarded team of sales and engineering professionals who will support BitFlow customers to ensure the best image acquisition solution for their application. The collaboration begins immediately with a first order placed this week for BitFlow CoaXPress and CameraLink frame grabbers. 

“We continue to seek outstanding distributor partners who will add value to our frame grabbers by providing outstanding customer service and technical knowledge,” said Donal Waide, Director of Sales for BitFlow, Inc. “MaVis has proven itself to be a successful distributor for many of the industry’s biggest brands, and we are thrilled to have them aboard to represent BitFlow. Our newly formed partnership enables us to expand our presence in targeted markets throughout Europe that are poised for growth opportunities in 2022 and beyond.”

MaVis Imaging GmbH is a company of Framos GmbH, focusing on providing machine vision components and cutting-edge solutions for nearly four decades. From cameras and lighting, to lenses and software, it represents a powerful portfolio of well-known brands such as Effilux, Kowa, Zeiss, Huaray, Sony, and of course, Framos. 

“BitFlow frame grabbers are an ideal compliment to our growing portfolio, especially in light of industry trends towards faster, higher resolution sensors that require the high-speed CoaXPress interface,” said Lorenzo Cassano, CEO of MaVis Imaging. “BitFlow has been setting the global standard for CoaXPress frame grabbers since CXP’s inception with a track record of innovation and success. In addition, BitFlow CameraLink frame grabbers will play a vital role in serving our customers who are seeking a cost-effective acquisition solution for more traditional imaging needs.”

European customers can contact MaVis Imaging at +39 039 888 0585, or visit www.mavis-imaging.com

BitFlow Frame Grabbers Enable Researchers to Leverage CoaXPress into Experimental 3D Profilometry Imaging Technique

Profilometry is an imaging technique used to extract topographical data from a surface in order to obtain surface morphology, step heights and surface roughness. Dynamic 3D surface imaging by phase-shifting fringe projection profilometry (PSFPP) has been widely implemented in diverse applications, including industrial manufacturing, archaeological inspection, entertainment, and biomedicine. PSFPP works by first projecting sets of phase-shifting sinusoidal fringe patterns onto 3D objects and then analyzing deformed structure images reflected from the objects to retrieve 3D surface information.

Existing PSFPP techniques have fallen short in simultaneously providing the robustness in solving spatially isolated 3D objects, the tolerance of large variation in surface reflectance, and the flexibility of tunable working distances with meter-square-level fields of view at video rate. To overcome these limitations, researchers at the INRS Énergie Matériaux Télécommunications Research Centre in Quebec, Canada developed a technique they termed Multi-Scale Band-Limited Illumination Profilometry or MS-BLIP. Supported by the synergy of dual-level intensity projection, multi-frequency fringe projection, and an iterative method for distortion compensation, MS-BLIP can accurately discern spatially separated 3D objects with highly varying reflectance.

The MS-BLIP system begins with a pulsed laser used as the light source. After expansion and collimation, the beam is directed to a 0.45” DMD (Digital Micromirror Device) at an incident angle of ∼24° to its surface normal. Binary fringe masks, generated by an error diffusion algorithm from their corresponding grayscale patterns, are loaded onto the DMD and displayed at up to 1 kHz. A band-limited 4f imaging system that consists of two lenses and one pinhole converts these binary patterns to grayscale fringes at the intermediate image plane. The smallest period in the used sinusoidal fringe patterns is 388.8 µm, which demands a 150-µm-diameter pinhole to pass the spatial frequency components of these patterns while filtering all noise induced by the digital half-toning. A dove prism rotates the generated fringe patterns to match the aspect ratio of the targeted scene. Then, a camera lens (AF-P DX NIKKOR 10-20mm f/4.5-5.6G VR, Nikon) projects these fringe patterns onto 3D objects. The deformed structure images are captured by an Optronis CP70-1HS-M-1900 CoaXPress camera with an Azure lens. Synchronized by the DMD’s trigger signal, the acquired images are transferred to a computer via a cable to a BitFlow Cyton-CXP CoaXPress frame grabber built on a half-size x8 PCI Gen 3.0 express board compliant with the CXP 1.1 standard.

CoaXPress (CXP) is an asymmetric high-speed point-to-point serial communication standard for the transmission of video and still images, scalable over single or multiple coaxial cables. It has a high speed downlink of up to 12.5 Gbps per cable for video, images and data, plus a lower speed uplink up to 42 Mbps for communications and control. Power is also available over the cable (“Power-over-Coax”) and cable lengths of greater than 100m may be achieved.

“Applications for CoaXPress are evolving with new use cases being found in precise medical research and 3D inspection where Camera Link or GigE Vision previously were the go-to standard,” said Donal Waide, Director of Sales for BitFlow, Inc. “Speed combined with stability, plus a growing choice of compatible cameras, have sparked a great deal of interest for CoaXPress in laboratory settings.”

To demonstrate MS-BLIP’s potential in industrial inspection, researchers imaged the rotational movement of a bamboo vase with extending branches rotating at 0.6 rad/s. MS-BLIP was operated at a working distance of 2 meters (m), with an FOV of 1.5 m × 1.0 m, and at a 3D imaging speed of 20.8 frames-per-second (fps). Under these working conditions, the depth resolution was quantified to be 3.7 mm, and the lateral resolution was measured to be 1.7 mm. Close-up views of the vase presented detailed structural information on its surface with depth-encoded color changes of the branches reflecting the rotation movement of the object.

Along with testing with the rotational movements of a craft vase, MS-BLIP also proved successful in the dynamic 3D visualization of translational movements of an engineered box, and full human body movements at a measurement volume 3X greater than existing BLIP systems. Future work will be carried out to improve MS-BLIP’s imaging speed by adopting multiple cameras, a faster DMD, and a more powerful light source. Besides technical improvement, the researchers will continue to explore new applications including automated industrial inspection human-computer interaction.

High-speed dual-view band-limited illumination profilometry using temporally interlaced acquisition C Jiang, P Kilcullen, Y Lai, T Ozaki, J Liang Photonics Research 8 (11), 1808-1817, May 2022

Researchers Develop Optical Tomography System with BitFlow Frame Grabber to Better Diagnosis Eye Diseases

WOBURN, MA, MARCH 11, 2022 — High resolution 3D imaging of biological tissue is used extensively in the diagnosis of eye diseases, typically by applying a technique known as Optical Coherence Tomography (OCT). OCT testing has become a standard of care for the assessment and treatment of most retinal conditions. It is comparable to ultrasound, except that OCT employs light rather than sound and thereby achieves clearer, sharper resolution.
In a typical OCT system, an optical signal from a broadband source is divided into sample-arm and reference-arm signals using a beam splitter. Both signals are combined and an interference signal is detected by a detector assembly. Some systems employ a wavelength-tuning optical source and are termed “swept source” OCT (SS-OCT). Meanwhile, a system where a stationary broadband signal is dispersed spatially and detected using a spectrometer is referred as a Fourier Domain OCT (FD-OCT).
Both SS-OCT and FD-OCT techniques suffer from changes in the polarization of the optical signal when the signal is transmitted through materials possessing anisotropic properties, meaning they have a different value when measured from different directions. This results in artifacts that compromise the quality of the image, and therefore, the ability of doctors to diagnose a disease.
Reducing Polarization Artifacts Funded by Max-Planck-Gesellschaft and Massachusetts General Hospital, a team of researchers have developed a polarization insensitive detection unit (PIDU) for a spectrometer-based FD-OCT system that greatly minimized polarization associated artifacts in OCT images. The spectrometer unit employed diffraction grating (set at 1200 lines per mm), an 80mm lens, and a Sensors Unlimited InGaAs line-scan camera with a resolution of 2048 pixels.
Data from the spectrometer was collected at a line-scan speed of 100kHz utilizing a BitFlow Axion-CL Camera Link frame grabber. The Axion-CL supports a single Base CL camera, Power over Camera Link (PoCL), and can acquire up to 24 bits at 85MHz. The frame grabber benefits from a PCIe Gen 2 interface and a DMA optimized for fully loaded computers. Data collected by the Axion-CL was processed on LabVIEW software.
To demonstrate the proof of principle in biological tissue the researchers imaged chicken breast because of its high birefringence. Tests were conducted on the OCT system with and without the PIDU. During the imaging, the tissue was held in hand and maneuvered constantly to mimic real clinical conditions. Images were acquired and recorded for 10 seconds.
For the OCT system without PIDU, it was observed that the bright and dark bands of the sample were constantly fluctuating which can be attributed to the polarization dependent phase changes in the sample light. The OCT system with PIDU, however, showed that the image artifacts were not noticeable, making for images that are more accurate for a doctor to observe. Researchers found that in close examination, it was not only the light from the tissue that changes in intensity but also the light from the inner wall of the capsule which is not in tissue contact. This supports the idea that polarization artifacts come not solely from a tissue sample, but can also arise from the system itself.
The researchers believe their new design will be particularly useful in clinical settings where the sample arm is constantly under motion during probe introduction or when it is subjected to peristaltic motion. Further studies are planned on other biological tissues.
David Odeke Otuya, Gargi Sharma, Guillermo J. Tearney, and Kanwarpal Singh, “All fiber polarization insensitive detection for spectrometer based optical coherence tomography using optical switch,” OSA Continuum 2, 3465-3469 (2019)
Schematic of the FD-OCT system employing polarization insensitive detection scheme is shown. SMF: Single mode fiber, Cr: circulator, BS: beam splitter, PC: polarization controller, Co: collimator, NDF: neutral density filter, M: mirror, MPU: motor power unit, EC: electrical connection, MW: motor wire, PBS: polarizing beam splitter, OS: optical switch, G: grating, L: lens, LSC: line scan camera (Image courtesy of Otuya, Sharma, Tearney, and Singh)
(left) Image of chicken breast tissue acquired with OCT system without PIDU and (right) image of the same tissue acquired with OCT system with PIDU (Image courtesy of Otuya, Sharma, Tearney, and Singh)

BitFlow BFPython API provides Python Wrapper to Enable Rapid Prototyping

WOBURN, MA, FEBRUARY 23, 2022 — BitFlow, a global leader in frame grabbers for machine vision, life sciences and industrial imaging, has introduced BFPython, an application programming interface that allows engineers with Python expertise to acquire images from BitFlow’s broad range of frame grabbers. Available immediately, these Python bindings wrap the BitFlow SDK’s configuration, acquisition, buffer management and camera control APIs. The download also includes several Python examples that illustrate how bindings can be used.

A free, open source programming language, Python is simple to learn and use, making it one of the most popular languages for developing imaging applications, whether in Linux, Windows or embedded platforms. In machine vision, where prototyping is mission critical to understanding how a proposed imaging solution is progressing, BitFlow BFPython accelerates the building process and reduces final development costs for those experienced with Python code. To further assist in development, BFPython includes several sub-modules that provide convenient interfaces to access features such as CoaXPress camera control (via GenICam), Camera Link camera control (via the CL Serial API), among others. 

Supporting the full line of BitFlow frame grabbers, the BitFlow SDK enables developers to bring high-speed image acquisition into machine vision applications, from cost-efficient simple inspection to ultra high-speed, high-resolution systems. The SDK includes a large number of example applications with full source code for aiding in the understanding the available functions, along with a number of utilities for developing and debugging. The free SDK version is for use with third-party applications such as LabVIEW, VisionPro and HALCON. The paid version is required for users developing their own applications, and offers such high-level advantages as header files, libraries and extensive example programs with detailed source code. 

BitFlow Frame Grabber Helps Researchers Generate 3D Structural Images of Biological Tissues

WOBURN, MA, JANUARY 24, 2022 — Biology researchers at Indiana University1 have developed an integrated system combining high-resolution optical coherence microscopy (HR-OCM) with dual-channel scanning confocal fluorescence microscopy (DC-SCFM) to enable 3D visual evaluation of cell activities involved in pupil developmental and disease conditions. Still in its experimental stages, this dual-modality 3D system simultaneously co-registers reflectance and fluorescence signals, giving it the ability to accurately track structural and functional changes in live specimens over time. Indiana University researchers hope to use their system to enable new investigations of biological processes in small animal models.
BitFlow Axion Camera Link frame grabber is a critical component of the hybrid system. It acquires the output signal from a spectrometer equipped with a Teledyne e2v high-speed line-scan camera operating at the rate of 250 kHz. A lateral resolution of 2-μm and axial resolution of 2.4-μm is captured in tissue over a field-of-view of 1.1 mm ×1.1 mm. The analog scanning signals, as well as the trigger signals for the BitFlow frame grabber, are generated synchronously through a four-channel analog output data acquisition card. Simultaneous recording of HR-OCM and DC-SCFM data was performed using custom software developed in LabVIEW 2017.
As data generated by faster, higher-resolution Camera Link cameras continues to grow exponentially, the Axion’s PCIe Gen 2 interface, with its StreamSync™ DMA optimized for modern computers, is needed to optimize their full performance. Features such as easier switching between different tap formats, a powerful acquisition engine, and a more flexible I/O and timing generator are all readily available in a dedicated low cost CL Base orientated frame grabber.
During development, researchers applied different strategies to enable the simultaneous recording of information, as well as to overcome the focal plane mismatch between both imaging modalities. The system’s performances were evaluated in imaging fluorescence microspheres embedded in multi-layer tape and silicone phantom. 
The combined system is synergistic in generating structural and functional information of samples; the DC-SCFM allows for the discrimination between different fluorophores, while the HR-OCM enables the 3D localization of the features inside tissue samples and enabled the depth localization.

1 “Development of high-speed, integrated high-resolution optical coherence microscopy and dual-channel fluorescence microscopy for the simultaneous co-registration of reflectance and fluorescence signals” Reddikumar Maddipatla, PatriceTankam School of Optometry, Indiana University, Bloomington, IN 47405, USA

System diagram

Neon-DIF Frame Grabber is BitFlow’s Upgrade Solution to Older Machine Vision Systems Running Differential Cameras

Neon DIF

Older machine vision systems are difficult and costly to upgrade, especially those based on RS422 and low-voltage differential signaling (LVDS) type interfaces. Incompatible with most modern frame grabbers, these legacy differential systems can now be brought up to speed using the BitFlow Neon-DIF differential frame grabber. Designed on the latest PCI Express (PCIe) platform, the Neon-DIF will upgrade an older differential system to acquire images up to 32 bits at 85 MHz from an existing LVDS camera, providing greater control, plus the convenience of running on Windows 10 or Linux OS.

“There are thousands of older differential systems today that handle basic processes at minimal cost, such as mail sorting, package handling, X-ray imaging, Focused Ion Beam, and Scanning Electron Microscopes. Unfortunately, users can’t upgrade the system’s PC to one featuring more powerful processing and a newer OS because the original PCI frame grabber is no longer available or isn’t compatible with a new PC,” explained Donal Waide, Director of Sales for BitFlow, Inc. “Our Neon-DIF frame grabber enables the user to save money by keeping the same LVDS line or area scan cameras, devices and application, yet upgrade their PC to use faster, more accurate image processing algorithms.”

Rather than PCI, the Neon-DIF is built on a half-size x4 PCIe bus interface that fits into the x16, x8, x4 and x1 slots found in today’s PCs. It installs fast and simple, bringing to an existing system a full set of new control signals and sync inputs for total camera and acquisition control.

Upgrades BitFlow Road Runner and R3-DIF
Along with older PCI frame grabbers from other manufacturers, the Neon-DIF provides an upgrade path for users of BitFlow Road Runner and R3-DIF PCI frame grabbers. It has the same connector pin-out and is compatible with their cables.

Ideal for Differential System OEMs
Besides legacy situations, the NEON-DIF is a cost-effective PCIe choice for OEMs developing new systems featuring cameras or other devices that output differential data. The Neon-DIF can acquire from just about any device and efficiently DMA its data into host memory at rates of 528 MB/S.

BitFlow SDK Support
The Neon-DIF is supported by the BitFlow SDK for both 32-bit and 64-bit Windows platforms. The SDK offers drivers, DLLs, and configuration utilities for people interested in using third party software. For those customers interested in developing their own applications, the SDK has header files, libraries, and example code for Windows XP/2003/Vista/Windows 7/10.

New Whitepaper to Help Machine Vision Designers Control CoaXPress Cameras for Greater Flexibility and Lower Costs

Claxon CXP4

WOBURN, MA, JUNE 23, 2020 – The challenges facing today’s machine vision integrators are more complicated and critical than ever before, as they strive to build faster, more accurate and cost-efficient systems in the wake of changing technology. To that end, BitFlow has published a new whitepaper Controlling CoaXPress Cameras from The BitFlow SDK Tools, Configuration File and APIs designed to help integrators new to the CoaXPress (CXP) standard introduce advanced CXP cameras into system infrastructure to shape positive outcomes.

CoaXPress is the world’s fastest standard for professional and industrial imaging applications such as machine vision, medical imaging, life sciences, broadcast and defense. It is an asymmetric point-to-point serial communication standard that transmits video and still images, scalable over single or multiple coaxial cables. It has a high speed downlink of up to 12.5 Gbps per cable for video, images and data, plus a lower speed uplink up to 42 Mbps for communications and control.

An invaluable learning tool, the 10-page whitepaper details the flexible CXP tools available in the BitFlow SDK (Software Development Kit), and how they work in concert to meet different application needs. It also provides examples showing optimization of a CXP machine vision system, accelerated and simplified by the BitFlow SDK.

The publication of the new whitepaper is part of the rollout of the new BitFlow Claxon CXP-12 PCIe Gen 3 frame grabber. CXP-12 is the latest CoaXPress speed jump, now transmitting video at 12. 5 Gb/S.

Get your copy here.

BitFlow Signs Strategic Distribution Partnership with Tietech to Expand Presence in Japan

WOBURN, MA, MAY 27, 2020 — BitFlow, a global leader in frame grabbers powering machine vision systems, today announced it has signed a new distribution agreement with ITANZI, a core company of Tietech Co., Ltd, headquartered in Nagoya, Aichi, Japan. With this agreement, BitFlow and Tietech are ideally positioned to meet the growing demand in the Japanese market for high-speed machine vision components required for the Industry 4.0 era. Working together, both companies are poised to capture significant market share by bringing industry-leading vision technology to Japan’s massive industrial base.

Under its distribution partnership with BitFlow, Tietech is now the primary distributor of BitFlow grabbers and accessories in Japan, and is also providing system integration and factory automation services using BitFlow products. In addition, Tietech will provide localized technical support, and has exclusive rights to certain BitFlow products in Japan.

“We at Tietech are very pleased to be entering into this new chapter together with BitFlow. Their products will blend perfectly into our ITANZI portfolio, and we are looking forward to expanding into the Japanese machine vision market together,” said Mr. Masahito Murase, Company Chairman of ITANZI.

Donal Waide, Director of Sales for BitFlow, stated, “This is an exciting time for BitFlow and a chance to consolidate our position in the Japanese market. BitFlow has been present in the Japanese machine vision market for over 15 years and this new partnership will enable us to demonstrate our world class products at the highest level.”

ITANZI is the machine vision brand of Tietech Co., Ltd, a part of the Techno Horizon Holdings group.

BitFlow Introduces SDK for NVIDIA Jetson AGX Xavier Development Kit

Jetson with a Claxon

BitFlow has released a Linux AArch64 (64-bit ARM) SDK that enables seamless integration of BitFlow frame grabbers with the NVIDIA Jetson AGX Xavier Development Kit. 

Donal Waide, Director of Sales for BitFlow, states, “Many of our customers are already using GPU solutions such as NVIDIA for image processing so adding this option to the already large BitFlow suite of adapters was a natural progression for the company. BitFlow has been supporting Linux for several years across a variety of flavors.”

Added Waide, “BitFlow was one of the first frame grabber companies to support NVIDIA’s GPUDirect for Video technology. BitFlow and NVIDIA have worked together for a number of years already.” 

With the advent of the new machine vision standard CXP 2.0 where data rates are now up to 50 Gb/S, customers are looking to process more and more data and in shorter timeframes. For this, a GPU can typically perform these tasks much more effectively than a CPU. Even with slower data rates such as Camera Link’s (up to 850 MB/S) the ability to quickly process more complex algorithms is equally important. 

The NVIDIA Jetson AGX Xavier is the first computer designed specifically for autonomous machines. It has six Engines onboard for accelerated sensors data processing and running autonomous machines software, and offers the performance and power efficiency for fully autonomous machines.